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We describe a point-set method for extracting the normal, curvature, and sur-
face area from unordered data points residing on a surface. This capability relaxes
front-tracking’s reliance on connectivity between interfacial points and allows front-
tracking to model topological changes at an interface naturally. We use this capability
in 2D and 3D front-tracking calculations to model coalescence. We also describe a
simple projection scheme which allows us to suppress parasitic currents in front-
tracking models. c© 2000 Academic Press

Key Words:front-tracking; connectivity; surface tension; parasitic currents.

1. INTRODUCTION

Front-tracking allows one to simulate fluid-flow problems in which there is a surface
of discontinuity separating two fluids or fluid phases [1, 2]. The method combines the
numerical solution of the Navier–Stokes equations with an explicit tracking of the phase
boundary. Front-tracking has many advantages, among them its simplicity and its lack of
numerical diffusion.

Front-tracking has been applied to a wide range of problems. It is used to study fluid
instabilities [3], chemically reacting flows [4] and detonations [5], material failure [6], and
phase changes [7]. The solution of immiscible flow problems is described in Unverdi and
Tryggvason [1, 8], its application to drop collisions in [9], the thermal migration of drops
in [10], and the dynamics of bubbly flows in [11–13]. A method for fluid flows with phase
changes is described in papers on dendritic solidification [14] and boiling flows [15].

Current front-tracking methods depend upon connectivity among interfacial points to cal-
culate the geometry of the interface. In a connectivity based scheme, one maintains a list of
neighbors for each interfacial point. There is a cost for connectivity, however. Connectivity
increases the complexity of the computer model when an interface undergoes topolog-
ical changes (coalescence or breakup), especially in three dimensions [16]. (A detailed
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description of the data structures and implementation issues for three-dimensional front
tracking is given in Glimmet al. [2].)

However, connectivity is not a necessary requirement for front-tracking. One can deter-
mine the unit normal, curvature, and surface area of individual data points without relying
on connectivity between data points. Such a capability allows one to redistribute or delete
interfacial points on an interface without worrying about reconnecting points. For example,
York [17, 18] describes a mass matrix method, which he uses to compute normals from un-
ordered points and to model air bag inflation in two dimensions. York embeds the surface in
a grid and constructs a characteristic function by expanding in tensor products of B-splines
about grid points. York’s formulation calculates values of the characteristic function on a
grid, which when interpolated to the interfacial particles, give a constant value along the
interface. Hoppe [19] computes normals by fitting the best least-squares plane to a surface
at a point using neighboring points and taking the plane normal to be the point normal.
Hoppe’s algorithm is simple and robust, but the unit normals computed are not as accurate
as York’s for the smooth surfaces we considered in 3D.

The cost and difficulty of maintaining the logical connectivity of interfacial points, es-
pecially when modeling coalescence or breakup in three dimensions, has motivated our
consideration of the geometric description of interfaces with unconnected points and our de-
velopment of a new algorithm, the point-set method, which follows York’s and Tryggvason
et al.’s work as described below.

In Section 2, we review briefly the standard front-tracking method. In Section 3, we
describe the point-set method. We discuss how one can compute normals and curvatures
from point-set data by constructing an indicator function. We also explain our means of
calculating surface areas of individual interfacial points without connectivity. In Section 4,
we present numerical results for free surfaces. We test the accuracy of the geometric descrip-
tion given by the point-set method. For fluid flows with surface tension, we model droplet
oscillations and coalescence in two and three dimensions. In Appendix 1, we describe an
alternative to the usual projection method for incompressible flow, which reduces parasitic
currents in numerical front-tracking calculations.

2. A BRIEF REVIEW OF FRONT-TRACKING

We briefly review front-tracking methods developed by Unverdi and Tryggvason [1] and
Glimm et al. [2]. In these methods, an interface of logically connected points is embedded
within a computational grid. The interface marks the boundary between two phases of a
material whose density, temperature, and other properties may be quite different. Within
each phase, however, it is assumed that fluid properties are constant. From the connected
interfacial points, one forms surface elements. In 2D, the points are members of a linked list,
and a surface element is defined to be the line segment between two adjacent members of
the list. In 3D, associated with each point is a table of nearest neighbors, and the interfacial
elements are triangles formed by connecting an interfacial point with two of its neighbors.
Elements can be added, deleted, or reshaped during the course of a calculation, but when
changes are made, the logical connectivity of the points must be updated.

In two dimensions, the surface tension force exerted upon an interfacial element, for
example, is

1Fs = σ(t̂2− t̂1), (1)
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where t̂1 and t̂2 are the unit tangent vectors at the endpoints of the segment [20] andσ

is the surface tension coefficient. The tangent vectors are computed by fitting a Legendre
polynomial through the end points of the elements and adjacent elements.

In three dimensions, the force on a triangular element [20] is

1Fs = σ
∮

t̂ × n̂ ds, (2)

where the integral is over the closed line path bordering the interfacial element. The unit
normal,n̂, is found by fitting a quadratic surface through an element’s vertices and those of
its neighbors.

The interfacial forces are transferred to a volume grid using

Fs

ρ

∣∣∣∣
xg

=
∑

p

1Fs

ρ

∣∣∣∣
xp

δ̃(xg − xp), (3)

whereδ̃(xg − xp) denotes a tensor product of one-dimensional approximate delta functions,
xp are interfacial point locations, andxg are grid locations.

The momentum equation,

∂u
∂t
+ u · ∇u = −∇ p

ρ
+ 1

ρ
∇ · τ + Fs

ρ
, (4)

along with the incompressibility constraint,

∇ · u = 0, (5)

are then solved on a grid.
Hereu is the velocity,p is the pressure,ρ is the density,τ is the viscous stress tensor,

andFs is the volume force due to surface tension. Among the approximations that have
been used are the MAC scheme [21] and Godunov’s method [22]. Fluid properties such
as density and viscosity are not advected but are updated once the interfacial points have
been moved with the local velocity [1]. The fluid properties are updated by constructing an
indicator functionI (x) whose value varies only as the interface is crossed. Thus, from the
value of the indicator function, all of the properties can be inferred. The indicator function
is calculated by solving a Poisson equation,

∇2I = ∇ ·G, (6)

whereG is the field created when the unit normals at the interface are interpolated to the
grid [1].

3. THE POINT-SET METHOD

3.1. The Indicator Function

In contrast to standard front-tracking, where the indicator function is calculated from
the surface normals, we extract information about a surface of unconnected interfacial
points by first constructing an indicator function,I (x). As in Unverdi and Tryggvason [1],
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the interfacial points are embedded within a computational grid. Given the grid and the
location of the interfacial points, we construct an indicator function which labels points,x,
lying inside and outside of the interface to distinguish one phase or material from another.
An indicator function for an ideally thin interface would have the following values:

I (x) =
{

1 if x is inside the interface,
0 if x is outside the interface.

(7)

The calculation of the indicator function requires two logically distinct operations. First,
an approximate indicator functionIa(x) is generated by solving Laplace’s equation on the
computational grid,

∇2Ia = 0. (8)

Second, the values of this solution are adjusted to match a constant value along the interface.
The solution of Laplace’s equation on a grid gives the values ofIa(xg) at the centers

of grid cells,xg. The role ofIa(x) is to distinguish interior and exterior grid cells. In the
simplest case, the interface does not intersect the computational boundaries, and boundary
conditions for the solution of Laplace’s equation are specified as follows: The grid boundary
is outside the interface, and it is sufficiently accurate in this simple example to specifyIa = 0
at cell centers adjacent to the boundary. In cells through which interfacial points pass, we
set Ia = 1. Figure 1 shows a circular interface and how the boundary conditions are set. (If
the interface does intersect the computational boundaries, one must also enforceIa = 1 on
boundaries which enclose the interface.) Laplace’s equation is then solved everywhere on
the grid except in those cells where the value ofIa is prescribed by the boundary conditions.

The solution to Laplace’s equation within a closed boundary with a constant value on
the boundary will be a constant. Thus, interior to the interface, the solution will be one.
Exterior to the interface, the solution will decrease smoothly from one near the interface to

FIG. 1. The value of the approximate indicator function,Ia, is prescribed to be equal to 0 in cells adjacent to
the boundary and 1 in cells which contain an interface point.
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FIG. 2. Solving Laplace’s equation with the prescribed values shown in Fig. 1 results in an indicator function
equal to 1 at grid points interior to the interface and between 0 and 1, denoted by X, between the interface and the
boundary.

zero near the grid boundary. Figure 2 shows the solution that arises from solving Laplace’s
equation using the boundary conditions in Fig. 1. In Fig. 2, X denotes a value ofIa between
0 and 1.

The numerical solution of Laplace’s equation is then adjusted.Ia is reset to zero wherever
Ia < 1− ε, whereε is some small parameter. The effect of this adjustment is to setIa to
zero in most of those cells labeled X in Fig. 2. This solves the problem of distinguishing
inside from outside, without the aid of connectivity.

We define an interior cell as a cell whose approximate indicator value isIa = 1 and that
is surrounded byIa = 1 cells. Similarly, we define an exterior cell as anIa = 0 cell that is
surrounded byIa = 0 cells. Typically, the interface will not cross an entire cell in a time
step, and interior and exterior cells remain interior and exterior cells from one time step
to the next. For all but the first cycle, interior and exteriorIa values can be fixed when
Laplace’s equation is solved. This allows the iterative solver used for Laplace’s equation to
iterate only over cells that are near the interface. Thus the solution of Laplace’s equation
for the approximate indicator function adds little to the computational work required in a
cycle.

The solution of Laplace’s equation givesIa at cell centers. A continuous and smoothed
Ĩ a is defined between cell centers using B-spline interpolation functions,

Ĩ a(x) =
∑

g

Ia(xg)S(x− xg), (9)

whereS(x− xg) is a tensor product of one-dimensional B-splines,M , given by

S(x− xg) = M(x − xg;1x)M(y− yg;1y)M(z− zg;1z) (10)

on a grid with grid spacings1x, 1y, and1z. The support of the B-splines is a small
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multiple of the mesh spacing in each coordinate direction. See [23] for a description of
B-splines. The cubic B-splineM3(x; h) and quintic B-splineM5(x; h) are

M3(x; h) =


2
3 −

( |x|
h

)2+ 1
2

( |x|
h

)3
, 0≤ |x|h ≤ 1,

1
6

(
2− |x|h

)3
, 1< |x|

h ≤ 2,

0, otherwise.

(11)

and

M5(x; h) = 1

120



(
3− |x|h

)5− 6
(
2− |x|h

)5+ 15
(
1− |x|h

)5
, 0≤ |x|h ≤ 1,(

3− |x|h
)5− 6

(
2− |x|h

)5
, 1< |x|

h ≤ 2,(
3− |x|h

)5
, 2< |x|

h ≤ 3,

0, otherwise.

(12)

The approximate indicator functioñI a = 1 interior to the interface, and̃I a = 0 exterior
to the interface. Convolution ofIa with the B-splines causes̃Ia to vary smoothly between 1
and 0 near the interface and yields an interfacial transition region of thicknessh.

The second step in the construction of the indicator function is to calculate a correction
to Ĩ a such that the value of the indicator function is constant along the interface. That is,
corrections,δ I p, and made to each point on the interface so that contours ofI coincide with
the interface, whereI = Ic. The corrected indicator function is defined by

I (x) =
Np∑
p=1

δ I pS(x− xp)+ Ĩ a(x), (13)

where Np is the number of interfacial points andxp are the interfacial positions. The
coefficientsδ I p are calculated by solving Eq. (14) at every point along the interface:

I (xp) = Ic. (14)

This results in a system of linear equations, written

Np∑
p′=1

δ I p′S(xp − xp′) = Ic− Ĩ a(xp). (15)

We chooseIc to be the average value ofĨ a on the interface,

Ic =
∑Np

p=1 Ĩ a(xp)

Np
.

The idea is similar to York’s mass matrix method [17, 18]. However, unlike the mass matrix
method, interface data is interpolated directly from interface points to interface points,
rather than from interface points to grid points, and then from grid points to interface
points. The resulting linear system is larger, but it is not rank deficient, it does not require a
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least-squares solution, and it does not require partial lumping to avoid singularity [24]. The
banded symmetric linear system which arises is solved using a conjugate gradient iteration.

One can also account for interfaces embedded within interfaces by using an indicator
function which can take on values other than 0 or 1.

3.2. Surface Normals and Curvatures

We compute the normal vectors,np, at the point locations by differentiating the indicator
function at the interface point:

np = −∇ I (x)|xp . (16)

The unit normals are

n̂p = np

|np| . (17)

The gradient in (16) is computed by differentiating the B-splines in (13) analytically.
The curvature at each interfacial point is calculated by differentiating the unit normals

[25]:

κp = −∇ · n̂p = −
(
∇ · ∇ I (x)
|∇ I (x)|

)∣∣∣∣
xp

. (18)

Once again, the B-splines are differentiated analytically. Since any calculation of curvature
requires two derivatives, the B-spline used should be at least twice continuously differen-
tiable. The lowest order spline which is twice continuously differentiable is the cubic spline.
The level-set method calculates the surface normal and curvature in the same way [26].

3.3. Surface Area

The description of interfacial dynamics often requires the calculation of surface tension.
The surface tension volume force has the form

Fs = σκδ(d)n̂, (19)

whereδ is the Dirac delta function,d is the normal distance to the interfacial surface, and
n̂ is the unit normal to the interface [26].

We follow [27] and [1] in using (3) to transfer the surface tension forces calculated on
the interface to a grid with grid spacings1x,1y, and1z. Our objective is to show that the
point-set method can be integrated into the standard front-tracking algorithm.

The calculation of the surface tension force requires integration over some volume, which
results in a value forsp, the arclength (2D) or surface area (3D) associated with the interfacial
point. The arclength or surface area multiplies the force per area (σκn̂) to give the force at
the interface point. The surface tension forcespσκn̂ is interpolated to the grid using

Fs

ρ

∣∣∣∣
xg

=
∑

p

sp
σκn̂

〈ρ〉
∣∣∣∣
xp

δ̃(xg − xp), (20)
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where〈ρ〉 is the average density across the interface andδ̃(xg − xp)denotes a tensor product
of one-dimensional approximate delta functions, e.g., in 3D,

δ̃(xg − xp) = S(xg − xp)

1x1y1z
,

whereS(xg − xp) is defined by (10). The B-spline(1/hg)M(d; hg), wherehg determines the
support ofM , can serve as an approximate delta function since its integral is 1, its maximum
increases without bound ashg→ 0, it has compact support, and it is a monotonically
decreasing function of increasingd. (Note that the approximate delta function is finite
whenxg = xp.)

To accomplish this interpolation, the surface area or arclength (sp) of each individual
interfacial point must be determined. Following Peskin’s [27] definition of a boundary
integral, we define the surface area of a point by constructing a circular element of area
around each point on the surface and dividing each circular area (possibly overlapping) by
the number of interfacial points (N < Np) whose distance to the center is less than a circle
with radiushp.

sp ≈ Area

N
. (21)

Since a differentiable surfaceH(x) = 0 can be approximated by a plane in the neighborhood
of a pointxp,

H(x) = 0≈ H(xp)+∇H |xp · (x− xp) = 0,

such a definition can be justified if the size of the circle is small compared with the radius
of curvature.

However, if the number of points contained within a circle of radiushp is small, small
variations inhp may causesp to change discontinuously. A smoother approximation of the
area results if the zeroth-order B-spline in the expression, which gives equal weight to all
points, is replaced by a higher order B-spline, which gives smaller weights to points further
away fromxp than to nearby points. For this reason, we adopt an integral formulation.
The integral of a positive functionf (x) can be approximated in a Monte Carlo sense
by

∫ ∫
Area

f (x) d A= Area

N

N∑
i=1

f (xi ),

which with (21) allows us to write

sp ≈
∫∫

Area f (x) d A∑N
i=1 f (xi )

.

Choosingf (x) to be a B-splineM(x; hp), its argument to be the distance fromxp, and the
integration bounds to be the circular support ofM(x; hp), one has in 2D and 3D respectively,

sp ≈ hp∑Np

i=1 M(|xi − xp|; hp)
(2D), (22)
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sp ≈
2πh2

p

∫∞
0 M(r )r dr∑Np

i=1 M(|xi − xp|; hp)
(3D), (23)

where now while all interfacial points,Np, are included in the summation, the only nonzero
contributions will come from points in the support ofM . The summations can be ar-
ranged to span only nearby interfacial points by binning the interfacial points. Note that
these equations are consistent with Eq. (21), which defines the surface area in an average
sense.

We note that one can avoid computing the surface areas of interfacial points by returning
to (19) and approximatinĝnδ(d) with

∇ I (x)
[ I ]

,

where [I ] is the jump inI across the interface, following the continuum surface force (CSF)
formulation [25].

4. NUMERICAL RESULTS

4.1. Tests of Geometric Accuracy

Table I shows the maximum relative percent errors in the unit normals, curvatures, ar-
clengths of individual points, and total arclength for an ellipse

x2

9
+ y2

4
= 1

computed with quintic and cubic B-splines. We observe that although the cubic B-splines
are twice continuously differentiable, the added smoothness of the quintic B-splines reduces
the errors significantly. The interfacial points have been distributed regularly according to

x = 3 cos(θi ), y = 2 sin(θi ), whereθi = 2π i

Np
, i = 1, Np, (24)

whereNp = 100. Tests were performed on a [−6, 6]2 domain with a 32× 32 grid. Indi-
vidual arclengths were computed by running the arclength computation twice, once with
equalhp for all interfacial points, and subsequently withhp = sp. Exact individual arc-
clengths were taken to be the average of the straight line segments between two neighboring
points.

TABLE I

Maximum Relative Percent Error to Ellipse x2

9 + y2

4 = 1

1.9 points per cell Cubic (%) Quintic (%)

Unit normal 3.9× 10−1 1.5× 10−2

Curvature 34 5.4× 10−1

Arclength 2.5× 10−1 3.4× 10−1

Total arclength 9.3× 10−3 8.1× 10−3
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FIG. 3. The errors in the calculation of curvatures, normals, and arclengths for an ellipse decrease with an
increasing density of points on the interface and are lower for quintic B-splines than for cubic ones.

Figure 3 shows the maximum relative percent errors in curvatures, normals, and arclengths
using quintic and cubic splines plotted as a function of the number of points per cell. The
total number of points used ranged from 50 to 3200 or 1.1 to 60.4 points per cell. Both
axes are plotted logarithmically. The convergence appears to be polynomial. If the errors
are assumed to decay asn−p

cell wherencell is the number of interfacial points per cell, we
calculatep with a least-squares fit to the lines in Fig. 3. For cubic B-splines,p = 2.0 for
arclengths,p = 2.1 for normals, andp = .96 for curvatures. For quintic B-splines,p = 2.0
for arclengths,p = 3.8 for normals, andp = 3.0 for curvatures.
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TABLE II

Maximum Relative Percent Error to x2

9 + y2

4 = 1 with Randomly Distributed

Points (Quintic Splines)

Number points (# pts/cell) 50 (1.3) 100 (2.1) 200 (3.8) 400 (7.7)

Unit normal 13 2.7× 10−2 3.4× 10−3 2.0× 10−4

Curvature 530 2.2 3.5× 10−1 5.0× 10−2

Total arclength 16 2.5 3.2× 10−1 7.5× 10−2

Table II shows the maximum relative percent errors when the points have been randomly
distributed according to

x = 3 cos(θi ), y = 2 sin(θi ), whereθi = 2π i

Np
± 2ξπ

Np
i = 1, Np, (25)

whereξ is a random number between 0 and .5. Random distributions reflect more accurately
what is likely to be encountered in a real calculation, where any initial ordering will be lost
as a result of the distortion of the interface. In Table II, the arclength computation was
computed with fixedhp = .2. The total arclength converges, as does the arclength of any
fixed segment of the curve, as the number of interfacial points is increased. Good accuracy
is achieved with two interfacial particles per grid cell.

We also performed calculations with a nonconvex “starfish,” the results of which are
displayed in Table III (for 50, 100, 200, and 400 points) and Figs. 4 and 5 (for 100 points).
The points on the starfish are distributed according to

x = cos(θi )+ .4 sin(5θi ) cos(θi ), y = sin(θi )+ .4 sin(5θi ) sin(θi ), θi = 2π i

Np
. (26)

Calculations were also performed with a square with 100 points as shown in Figs. 4 and
5. Considering interfacial points four points removed from the corner point, the maximum
relative percent error was 9.0× 10−2% for the unit normals and the largest curvature was
6.6× 10−3 (it should be identically zero).

Table IV and Fig. 6 show the results of a 3D calculation for the ellipsoid,x2/16+
y2/9+ z2/4= 1, with quintic splines. Interfacial points were distributed on the ellipsoid
by iteratively subdividing and projecting the faces of an inscribed polyhedron, starting
with the equilateral triangular faces of a 20-sided icosahedron [28]. The surface area was
computed withhp = 3

√
surfacearea/(Npπ), which is 3 times the radius of an average

interfacial element. Calculations were performed with a 173 grid on a [−10, 10]3 domain.

TABLE III

Maximum Relative Percent Error to Starfish (Quintic Splines)

Number points (# pts/cell) 50 (1.6) 100 (2.8) 200 (5.6) 400 (11.1)

Unit normal 29 3.2× 10−1 6.8× 10−2 1.2× 10−2

Curvature 270 5.7 2.3 1.2
Arclength 30 19 9.0 2.9
Total arclength 2.0 3.1× 10−1 9.4× 10−2 2.6× 10−2
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FIG. 4. The computed normals for a square and a starfish-shaped interface are plotted. The normals are well
behaved, even where the curvature is high.

Again, the convergence appears to be polynomial. If the errors are assumed to decay as
n−p

cell, wherencell is the number of interfacial points per cell,p = .68 for quintic arclengths,
p = 2.3 for quintic normals, andp = 1.9 for quintic curvatures.

4.2. Droplet Oscillations

We solve the incompressible Navier–Stokes equations (4), (5) on the fixed grid using a
MAC [21] scheme. As do Unverdi and Tryggvason [1], we update density and viscosity
using the indicator function. The surface tension force is computed using (20) where the
interfacial curvatures and normals are computed using the formulas in Section 3.2, and the
surface areas are computed using (22) and (23).

In our simulations of droplet oscillations, density acquires a constant (although different)
value inside and outside the interface. As such, we use the Boussinesq approximation

∇ p×∇ρ = 0. (27)

The relation holds outside the interfacial region since∇ρ = 0. Inside the interfacial region,
using the continuity of stresses at a fluid boundary, one has

[−p+ τ ]n̂ = −σκn̂,

FIG. 5. The computed curvatures for a square interface exhibit large but bounded variation as one traverses
the interface, even at the corners of the square (left panel). Computed curvatures for starfish-shaped interface vary
dramatically, yet are good approximations at 2.8 points per cell as Table III shows.
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TABLE IV

Maximum Relative Percent Errors to Ellipsoid x2

16 + y2

9 + z2

4 = 1

Number points (# pts/cell) 42 (1.0) 162 (1.8) 642 (6.7) 2562 (25.6)

Unit normal 200 4.4× 10−1 6.6× 10−2 9.1× 10−4

Curvature 490 2.1 3.0× 10−1 1.2× 10−2

Total surface area 7 3.3 1.3 5.3× 10−1

where the brackets denote the jump across the interface. In the interfacial zone, the gradient
of p should be aligned (or nearly aligned) with the gradient ofρ for the specific numerical
simulations we perform. A resolved numerical experiment (on a 128× 128 mesh) for a
simple 2D oscillation shows small differences between when the Boussinesq approximation
(27) was and was not used.

Thus,∇ p
ρ

behaves like a potential∇φ since

∇ × ∇ p

ρ
= ∇ × ∇ p

ρ
+ ∇ p×∇ρ

ρ2
= 0.

Using∇φ instead of∇ p
ρ

allows us to use fast Poisson solvers (we use the 2D and 3D cyclic
reduction routines in FISHPACK), instead of more expensive iterative solvers such as the
Incomplete Cholesky Conjugate Gradient (ICCG) method when (4), (5) are solved.

In our simulations of droplet oscillation, we employ an alternate projection method
described in Appendix 1, which significantly reduces the parasitic current in the 2D and
3D droplet oscillations. The parasitic current is a spurious velocity flow which occurs at
an interface with nonzero curvature. It becomes most conspicuous as a droplet approaches
equilibrium. (See Fig. 15.)

We first perform theoretical comparisons with an oscillating droplet. A 2D droplet with
a radius perturbed according to

r = r0+ α cos(nθ)

FIG. 6. The errors in computed values of the curvatures, normals, and surface areas for an ellipsoid on a 173

3D grid converge with increasing particle density.
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should have a frequency of oscillation given by

ω2
n =

(n3− n)σ

(ρd+ ρe)r 3
0

as shown by Fyfeet al. [29] whereρd and ρe are the density, interior and exterior to
the droplet respectively. Forn = 2, σ = 1, α = .01, ρd = 1, ρe = .01, andr0 = 2, in a
[−10, 10]2 doubly periodic computational domain with 400 interfacial points, the frequency
is 13.2% slower in a 642 grid, 6.1% slower in a 1282 grid, and 1.5% slower in a 2562 grid.
Tryggvassonet al. [20] are able to approach the theoretical frequency to within 1.9% with
a 1282 grid under similar conditions.

Figure 7 shows unconnected and connected 2D calculations showing plots of kinetic
energy1

2

∫
ρu · u dV, performed with a MAC scheme on a doubly periodic 64× 64 mesh

with σ = 1. The interface is initially the ellipsex2/9+ y2/4= 1 at rest. The number of
interfacial points placed on the ellipse varies from 100 for the connected case to 150 for the
unconnected case. The densities (viscosities) inside and outside the ellipse are 1. (.01) and
.01 (5× 10−5) respectively. Particles are periodically redistributed on the interface using
Legendre interpolation when interfacial points are connected and periodically regenerated
(Section 4.4) when interfacial points are not connected.

Figure 8 shows unconnected and connected 3D calculations performed with a MAC
scheme [21] on a triply periodic [−10, 10]3, 323 mesh withσ = .2, and 642 interfacial
points placed on the ellipsoidx2/16+ y2/12.25+ z2/14.44= 1. The geometry of the
interface is calculated on a 163 mesh for the unconnected case. Points are not regenerated or
redistributed in either the connected or unconnected case. The densities (viscosities) inside
and outside the ellipse were 1. (.05) and .01 (1× 10−4) respectively. In the connected
case, the normals are computed using York’s mass matrix scheme, and the curvatures are
calculated using (2).

FIG. 7. The kinetic energy histories of an oscillating cylinder on a 64× 64 grid in 2D with connected (dashed
curve) and unconnected (solid curve) interfacial points are compared. The kinetic energy decreases slightly more
rapidly with unconnected points, but the frequency of the oscillations is the same for both calculations.
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FIG. 8. The kinetic energy histories of an oscillating ellipsoidal drop in 3D on a 323 grid with 642 interfacial
points are compared for connected (dashed curve) and unconnected (solid curve) points. As in 2D, the decay of
kinetic energy is more rapid with unconnected points.

Both 2D schemes agree well in matching the droplet oscillation period. The 2D connected
scheme has a slightly higher kinetic energy peak. If we assume the peaks of the oscillation de-
cay ase−αt , thenα = .0306 for the connected case andα = .0358 for the unconnected case.
The differences in the 3D schemes are more conspicuous. We attribute the main difference
to possible inaccuracies in the surface area calculation in the unconnected case. Figure 6
shows that in 3D, the surface area calculation is the least accurate computed attribute.

4.3. Coalescence

Figures 9 and 10 show a coalescence of two cylindrical droplets in 2D. The simulations
begin with interfacial points distributed about two unit circles placed in close proximity

FIG. 9. Initial distribution of a 100 interfacial points shows two undeformed cylinders in close contact. After
regeneration on a 64× 64 grid, interfacial points near the point of contact are deleted. Velocity vectors generated
from the surface tension forces are shown for the regenerated interface.
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FIG. 10. Coalescence (continued) of two cylinders in Fig. 9 is calculated with the point-set method withσ = .5
on a 64× 64 grid and 90–100 points on the interface. Surface tension drives their coalescence and deformation
into a ellipse which eventually relaxes into a circle.

to each other. The 2D calculation is performed on a [−6, 6]2 domain with a 64× 64 grid
andσ = .5. The densities (viscosities) inside and outside the ellipse are 1. (.05) and .01
(2.5× 10−4) respectively. Figure 10 shows the actual interfacial points at different times.
Figure 12 shows a 3D calculation (where isosurfaces of the droplet are shown) of coalescence
run on a [−4, 4]3 domain with a 323 grid. Initially interfacial points are distributed about two
unit spheres placed in close proximity. The geometry is computed on a 163 grid withσ = .2.
The densities (viscosities) inside and outside the ellipse are 1. (.05) and .01 (1× 10−4)
respectively. Approximately 90–100 points are used for the 2D interface and fewer than
500 points are used for the 3D interface. The number of points used on the interface varies
due to regeneration. Figure 11 shows a 2D calculation where a specified velocity field is
chosen to cause an initial circular interface to break up.

FIG. 11. Breakup is shown of a cylinder in 2D with the velocity prescribed. Points on the interface are shown
at equally spaced intervals in time. The dark points on the undisturbed interface represent multiple times.
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FIG. 12. Two spherical drops coalesce in 3D on a 323 grid with σ = .2. Isosurfaces of the indicator function
are plotted.

4.4. Regenerating Interfacial Points

Periodically, points are regenerated on the interfaces as in, for example, Figs. 7, 9, 10, 11,
and 12. We note that regeneration is required for regularization and to maintain an acceptable
number of interface points per grid cell. The indicator functionI (x) is constructed on the
computational grid with the existing interfacial points. New interfacial points are then
generated by embedding the indicator function within a finer grid. The finer grid is created
by subdividing cells of the computational grid as shown in Fig. 13, where bold lines mark
the boundaries of the actual computational mesh and lighter lines mark the boundaries of
the finer grid. Cell centers of the fine grid (e.g., point A) are projected onto the interface
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FIG. 13. A new point is added to the interface if a cell center and its projection onto the interface lie in
the same fine cell. Bold lines mark the boundaries of the actual computational mesh and lighter lines mark the
boundaries of the finer grid. Straight line segments between cell centers on the fine grid and the interface mark
cells in which new interface points have been created, e.g.,AB. Computation of the projection usesI (x).

(e.g., point B) using a one-dimensional Newton iteration, searching either in the normal
direction,∇ I (x), or in one of the coordinate directions. One knows that the interface has
been located when the indicator function is equal toIc, the interfacial value, Eq. (14).

If point B lies within the same fine cell as the cell center A, point B is retained as an
interfacial point. All points (e.g., point A) whose projection onto the interface (e.g., point B)
have been retained as interfacial points are indicated in Fig. 13 by a line drawn between fine
cell centers and corresponding points on the interface. The same operations are performed
whether coalescence occurs or not.

The regeneration scheme can preselect cell-centered points of the fine grid on the outside
of the interface,Ic− ε < I (x) < Ic, or on the inside of the interface,Ic+ ε > I (x) > Ic,
as candidates for this regeneration process, where sayε ≈ 0.2Ic.

Regenerating points from the outside allows interfacial points at a contact surface to
be deleted. (Regenerating points from the inside of the interface in Fig. 9 recreates both
circles and would not allow points near the point of contact to be deleted.) For example,
for coalescence to occur in Figs. 9 and 12, one must not regenerate points near the point
of contact between the two spheres or circles. This can be enforced by regenerating points
from the outside of the two interfaces. Figure 14 shows contours ofI generated by two
circles in close proximity. The contours are densely packed away from the point of contact
and disperse (|∇ I | small) near the point of contact. The distance of a contour line of
I (x) = Ic∗ < Ic from the contour lineI (x) = Ic would vary, growing relatively large near
the point of contact. Thus, if one were to select points on the fine grid to project onto the
interface, one could preselect points whose indicator value satisfies sayIc− ε < I (x) < Ic∗ ,
and points near the contact surface would not fall into this category. If a cell-centered point
on the fine grid did project itself onto the point of contact, the distance traveled would be too
large for the cell center (A) and the projection location (B) to be in the same fine cell. Thus,
points near the point of contact will not be regenerated. Subsequent construction of the
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FIG. 14. Contours of the indicator function,I , for two cylinders in close contact are plotted. The variation in
I near the contact line is small.

indicator functionI (x)will smooth the transition where the interfacial points were deleted.
Such an effect is realized in Fig. 9. The plot shows the initial placement of interfacial points
at time= 0 and the placement of the interfacial points after regeneration, still at time= 0,
with the incompressible velocity field generated from the regenerated points.

We also successfully performed a numerical experiment with quintic splines where the
distance between two circles is controlled and successively decreased. Initially both circles
are regenerated, but at a sufficiently small distance, coalescence occurs.

Interfaces also can undergo breakup. Regenerating points from the inside of the two
interfaces is compatible with breakup, because it allows points to be added as contact
diminishes. Inside regeneration is employed in Fig. 11 where one begins with a circle and
a specified velocity field is chosen to cause breakup.

When one does not know whether breakup or coalescence will occur, one must regenerate
points both from the inside and outside of the interface, using the points from previous re-
generation for the second regeneration. We have successfully regenerated smooth interfaces
and even the square interface in Fig. 4 using the regeneration scheme. However, we assume
our means of constructing the indicator functionI (x) via (8)–(13) only achieves the inter-
facial constant valueIc (14) at the interface as defined by the interfacial points. Since any
smooth interface can be locally approximated by a plane, this is a valid assumption. How-
ever, we do not specifically imposeI (x) 6= Ic off the interface. An alternate construction of
I (x) which couples the solution of the approximate indicator function and the correction
step should avoid this potential problem if the interface is sufficiently resolved, but it also
requires that one solve a larger linear system.

5. CONCLUSION

We have demonstrated that the normals, curvatures, and surface areas can be extracted
from unconnected points on a surface using the point-set method, and we have used this
information to perform front-tracking computations without connectivity. These computa-
tions include an oscillating ellipse and ellipsoid, a breakup driven by a specified velocity, and
coalescence in 2D and 3D. We rely on a regeneration scheme to redistribute interfacial points.

The point-set method costs more than standard front-tracking. One must solve a linear
system every time step to refine the indicator function (15). For a reasonable number of
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interfacial points and grid dimensions, the oscillating ellipse problem in 2D with a pressure
Poisson Incomplete Cholesky Conjugate Gradient solver runs two to three times slower
for the unconnected case. However, one can minimize the additional cost by using only
2–3 interfacial points per cell, with which normal and curvatures can be computed with
reasonable accuracy.

In the Appendix, we also demonstrate a projection technique for solving incompressible
flow problems which suppresses parasitic currents in point-set and connected front-tracking
computations. The benefits of such a projection scheme are quite dramatic. One does pay
a penalty in 3D however, in that three elliptic equations need to be solved to project the
velocity. Only one elliptic solver needs to be solved in 3D using a conventional projection
technique.

More work is needed to apply these techniques to more complex fluid phenomena in-
volving surface tension, but the results of this study suggest the potential of the point-set
method, especially in three dimensions.

APPENDIX: PARASITIC CURRENTS

Surface tension models attempt to account for forces confined to an unresolved thin
membrane by using the finite resources of a computational grid. In incompressible flow,
the exchange of information from this membrane to the computational grid can lead to the
production of parasitic currents. Figure 15 shows the parasitic currents produced when a
perfect circle, which should be in equilibrium, is subjected to surface tension on a 32× 32
Cartesian grid with 200 interfacial points. The left plot shows the parasitic currents (the ac-
tual velocities) in a conventional projection technique and the right plot shows the reduction
in the parasitic current (2400 times reduced) using an alternate projection technique. The
ratio of kinetic energy to surface energy is 4.5× 10−8 in the left plot and is 2.0× 10−16 in
the right plot.

Popinet and Zaleski [30] also discuss a means of reducing the parasitic current using a
pressure-gradient correction. The difference between our method and Popinet’s is that in our

FIG. 15. Parasitic currents are shown for interfacial points distributed on a perfect circle using a standard
projection scheme (left plot) and the alternate projection scheme (right plot) described in the Appendix.
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FIG. 16. The kinetic energy histories of an oscillating cylinder on a 64× 64 grid in 2D with connected
interfacial points are compared using a standard projection scheme and the alternate projection scheme. The
kinetic energy decays as it should using the alternate projection scheme, unlike the standard projection scheme
which suffers from a visible parasitic current.

method, the magnitude of the parasitic current depends on how well one computes the in-
terfacial curvatures, and thus it is largely independent of the resolution of the computational
grid and dependent on the interfacial point resolution.

In Fig. 16, the new projection scheme is compared to the standard projection scheme
under the same conditions as Fig. 7. The new projection suppresses the parasitic current
quite dramatically compared to the standard projection scheme.

A.1. Projection Scheme

To motivate our discussion, let us begin with the incompressible Navier–Stokes equations
with surface tension forces (4), (5), repeated here again for clarity,

∂u
∂t
+ u · ∇u = −∇ p

ρ
+ 1

ρ
∇ · τ + Fs

ρ
, ∇ · u = 0. (A.1)

At equilibrium, a balance between two nonzero terms (∇ p/ρ andFs/ρ) must be maintained,
but this is difficult to enforce numerically. Local imbalances in the two forces lead to parasitic
currents [31].

Numerically, one normally computes a new velocity field from the surface tension forces
and the viscous stress tensor and then projects the velocity field into solenoidal space by
adding the pressure term. Specifically, one computes a temporaryũ, which may not be
solenoidal, using

∂ũ
∂t
= R,
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where

R = −u · ∇u+ 1

ρ
∇ · τ + Fs

ρ
.

One then computes a final velocity by adding the pressure term

u = ũ− ∇ p

ρ
. (A.2)

The pressure is computed by taking the divergence of (A.2), assuming∇ · u = 0:

∇ ·
(

1

ρ
∇ p

)
= ∇ · ũ. (A.3)

We propose an alternate way of projectingũ into solenoidal space [32]. Rewrite (A.3) in
the form

∇ ·
(

1

ρ
∇ p− ũ

)
= 0. (A.4)

The expression inside the parentheses of (A.4) is solenoidal, i.e.,

ũ = −∇ × λ+ ∇ p

ρ
. (A.5)

Multiply (A.5) by ρ, and apply the curl operator

∇ × ρ∇ × λ = −∇ × (ρũ). (A.6)

Equation (A.6) reduces to

−∇ · ρ∇λk̂ = −∇ × (ρũ) (A.7)

in 2D. Solve the elliptical PDE forλ and set

u = −∇ × λ.

Let us compare the curl formulation with the standard divergence formulation. Denote
the pressure Poisson operator (A.3) byL, and denote the operator in (A.6) byL∗:

L = ∇ ·
(

1

ρ
∇
)
, L∗ = ∇ × (ρ∇×).

The net correction to the velocity field with the divergence formulation is

∂u
∂t
=
(

R− 1

ρ
∇(L)−1∇ · R

)
. (A.8)

The net correction with the curl formulation is

∂u
∂t
= ∇ × (L∗)−1∇ × (ρR). (A.9)
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To enforce the zero divergence ofu in (A.8),

∇ · 1

ρ
∇(L)−1φ = φ

must be enforced, for arbitraryφ andρ on a discrete level. To enforce the zero divergence
of u in (A.9), one must enforce the standard vector indentity

∇ · ∇ × v = 0,

for arbitraryv. This is easily achieved on a rectilinear grid.
Such an idea in not new. Sussmanet al. [26] use the curl formulation to projectũ. The

vorticity–stream function formulation of the Navier–Stokes equations is essentially a curl
projection scheme whereρ is assumed not to be spatially varying.

A.2. Projecting the Surface Tension Force

In front-tracking, the projection idea can be exploited so that when the curl of the surface
tension force is computed, the differentiation occurs on the surface of the interface. Using
(19), one has

∇ × Fs = ∇ × (σκδ(d)n̂) = ∇(σκδ(d))× n̂+ σκδ(d)∇ × n̂. (A.10)

Now

∇ × n̂ = −∇|n| × n
|n|2 (A.11)

sincen = ∇ I (x). For an interface with uniform thickness,∇|n| will have no variation in
a direction tangential to the surface. Thus it will point in the direction ofn. Consequently
∇|n| × n = 0. Thus (A.10) simplifies to

∇ × Fs = ∇(σκδ(d))× n̂ = σκ∇δ(d)× n̂+ δ(d)∇(σκ)× n̂.

Using the fact that∇δ(d) = 0 at the interfacial point gives

∇ × Fs = δ(d)∇(σκ)× n̂ (A.12)

at the interface.
When one has connectivity in 2D, one can calculate∇κ as required in (A.12) at an

interfacial point by using centered differences and nearest neighbors. However, unconnected
points and 3D calculations require a different approach.

One can achieve acceptable results by calculating∇κ by differentiating (18) for uncon-
nected points. However, for the case of a circle, we found that the following algorithm
for calculating∇κ further suppressed the magnitude of the parasitic current and could be
generalized to be used in a front-tracking code which used connectivity.

Define an averaged grid curvature by interpolation from the interface to the grid (xg),

κg =
∑

p κpS(xp − xg)∑
p S(xp − xg)

. (A.13)
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Writing

κp =
∑

g

κgS(x− xg)|xp, (A.14)

one can calculate∇κ at the interfacial point location by differentiating (A.14):

∇κp =
∑

g

κg∇S(x− xg)|xp . (A.15)
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